
Keyronex Operating System Internals
Release 1.0

NetBSD User

Jul 19, 2023

CONTENTS

1 Contents 3
1.1 Introduction . 3
1.2 Virtual Memory Manager . 3
1.3 I/O . 8

i

ii

Keyronex Operating System Internals, Release 1.0

Note: Keyronex (and this book) are both very early in development.

CONTENTS 1

Keyronex Operating System Internals, Release 1.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

This book is intended to outline the design of the Keyronex operating system and discuss its implementation.

1.2 Virtual Memory Manager

1.2.1 Overview

The virtual memory (or VM) subsystem is the centrepiece of Keyronex. It provides for applications to use more memory
than is physically available in the system, to treat resources (e.g. files) other than main memory as if they are memory,
to implement the Posix fork() function efficiently, and to provide protection and sharing of memory between programs.

Note: “Paging” (and “virtual memory”) are sometimes used online as simple synonyms of “virtual address trans-
lation”, the process by which a virtual memory address is translated to a physical address, or to the management of
page tables alone. “Paging” traditionally refers to movement of pages of data between backing store and main memory,
while virtual memory refers to the abstraction described in the first paragraph of this section. These are the senses in
which these terms are used here.

Keyronex’ VM subsystem has several responsibilities. These include:

Resident page management:
VM provides for physical page frames to be allocated as needed for various uses. It implements a page replace-
ment policy to determine when to page-out a disk to backing store, such as the backing file for mapped files or the
swapfile for anonymous memory. A cleaning policy is also implemented to write back changed pages pages of
mapped files to disks regularly so that the risk of data loss is reduced. Virtual copy optimisation is also provided.

Address space management
An abstract, machine-independent description of the virtual memory state of each process is kept, including the
layout of its address space and the inheritance and memory protection associated with regions of that space.

Physical mapping
The abstract representations maintained by VM must be translated to forms required by the platform’s memory
management unit. This involves creating and maintaining hardware-specific page tables to describe the mapping
of resident pages, updating these in response to changes in state such as page-ins or out, and ensuring the TLBs
are appropriately flushed, especially on multiprocessor systems.

The Keyronex virtual memory manager is principally derived from the design of NetBSD’s UVM.

3

Keyronex Operating System Internals, Release 1.0

1.2.2 Data Structures

A number of data structures play a role in the system. This is an overview of the major players:

vm_page_t

Represents a physical page of usable memory. These are placed on queues according to their use and state. Queues
include the free queue, wired queues, and others - queues (and vm_page_t in greater depth) are described in the section
on paging. The set of all vm_page_ts is collectively called the Resident Page Table (or RPT).

Hint: A vm_page_t is analogous to a struct page in GNU/Linux or a PFN database entry in NT.

If it is being used as a page to store part of anonymous memory, it holds a pointer to the vmp_anon it belongs to; if it is
being used to store data belonging to a regular VM object, e.g. part of the vnode of a regular file on a filesystem other
than tmpfs, it stores a pointer to the VM object it belongs to and the offset of this page within that object. In either of
these cases, it also contains a pv_map list head, which stores, for each mapping of the page, the vm_map_t into which
it is mapped and its virtual address within that map.

Note: When talking about a “page owner”, this refers to the vmp_anon or the vm_object_t to which it belongs, as
described above. Page ownership is irrelevant if a page does not belong to either of these, e.g. in the case of kernel
wired memory. Anything which says “the page owner must be locked” is ignored in that case.

vm_page_t`s also carry a status enumeration. This That bit is guarded by the page queues lock. Some other fields of a
`vm_page_t are guarded by its owner.

vmp_anon

A virtual page of anonymous memory. It may link to a vm_page_t if it is resident in memory. If it has been swapped
out, it instead stores an identifier by which its contents can be retrieved by the swap pager, called a drum slot. It also
stores a reference count used in copy-on-write logic, and a mutex lock.

It is hoped that vmp_anons will themselves become pageable in the future, which will help to dissociate availability of
virtual memory from physical memory; currently availability of virtual memory is indirectly constrained by available
physical memory, because used virtual memory must be described by vmp_anons.

vm_amap

A map the anons associated with an anonymous VM object or the anonymous part of a vm_map_entry. The map is a
3-level trie, with each level one page in size. A pointer to the 1st level is stored in the vmp_amap, which stores pointers
to 2nd levels, which itself stores pointers to 3rd levels, with the 3rd levels storing pointers to vm_anons. The three-level
system ensures that memory use is minimised for sparse regions of anonymous memory.

4 Chapter 1. Contents

Keyronex Operating System Internals, Release 1.0

vm_object_t and vmp_objpage

These are mappable VM objects. Some are embedded in vnode structures. There are three kinds, and for each kind,
different elements of a union of fields are used:

• Anonymous objects are backed by the swapfile. They are embedded in vnodes only in the case of tmpfs. They
store vm_amap in the union.

• Regular objects must be embedded in vnodes; they are backed by the getpage/putpage routines of the vnode they
are embedded in. They store a head of an RB tree of vmp_objpage structs in the union.

• Device VM objects refer directly to areas of physical address space, e.g. a framebuffer. They may not be embed-
ded in vnodes. They store a start and size physical memory address fields in the union.

All three also carry a mutex lock.

A vmp_objpage is allocated for each resident page in a regular vm_object_t. These store linkage for the RB tree, the
page number of the object they describe, and point to the vm_page_t where the data is resident.

vm_map_t and vm_map_entry

An abstract representation of a virtual address space that comprises an RB tree consisting of vm_map_entry` structures.
A special kmap` contains the kernel’s mappings, which are mapped into all processes but not accessible in user mode.
vm_map_ts carry a mutex lock.

Each vm_map_entry is an entry in the address space map, with member fields including the base address and size of
the virtual region it describes, the current and maximum memory protection of the region, and its inheritance; whether
on fork it is virtual-copied or shared.

These entries may refer to a vm_object_t, and if they do, they include a page-aligned offset into the object. Faults in
the virtual address region described by the map entry are handled by the underlying vm_object_t, except in the case of
write faults on anonymous-on-vnode mappings; these are described later in the section on fault handling.

The has_anonymous flag is set if the entry refers to either process-private anonymous memory or a copy-on-write
mapping of a vm_object_t. If the flag is set, the entry also has a vmp_amap` associated with it.

1.2.3 Page management

In a virtual memory system, main memory is treated as the cache of secondary storage, so the virtual memory manager
tries to ensure that a large amount of memory is used at all times as a cache, as unused memory is memory wasted. The
technnique by which this is done in Keyronex is called paging - the movement of pages of data to and from the backing
store with which that page is associated. Pages are associated with backing store according to which VM object they
belong to; if they belong to a regular VM object, their backing store is a file or block device, while if they belong to
anonymous memory, their backing store is the swap space.

Note: In the future Keyronex might support user-defined VM object types as well as the built-in regular and anonymous
objects. A custom pager would be required for these to carry out page-in and page-out. One use-case would be to allow
for a single-level store for the Oopsilon programming environment.

Pages are paged-in from their backing store in response to page faults, and paged out according to a page replacement
policy. Keyronex uses a simple global page replacement algorithm, the FIFO second-chance approach, a variant of
the general category of Not Recently Used page replacement algorithms in the same family as Clock. This involves
maintaining two queues of pageable pages: active and inactive.

1.2. Virtual Memory Manager 5

Keyronex Operating System Internals, Release 1.0

The page daemon

The page daemon, a kernel thread named vm_pagedaemon, is responsible for maintaining the page replacement policy.
It maintains high and low watermarks for number of free pages and number of inactive pages, and spends most of its
time sleeping on an event.

The event is signalled under two conditions:

• there has been a request to allocate a physical page, but the number of pages on the free queue is less than the
low watermark for the free page queue; or

• greater than 75% of main memory is in use, and the number of pages on the inactive queue is less than the low
watermark for the inactive queue.

The page daemon will wake up and calculate new watermarks for the inactive queue; these aim to keep around 33%
of pageable pages - that is, the sum of the number of pages on the active and inactive queues - on the inactive queue.
If the number of pages on the inactive queue is less than that of the low watermark, the page daemon will move pages
from the tail of the active queue to the head of the inactive queue until the inactive queue high water mark is reached.
Pages carry used bits to determine whether they have been accessed or not; this bit is reset when the page is moved to
the inactive queue (this may involve a TLB shootdown; see the Physical Mapping section).

If the number of free pages is below the free page low watermark, the pagedaemon will now also take pages from the
tail of the inactive queue and check their used bit. If it is set, the pages get a second chance - they are replaced to the
head of the active queue. Otherwise, they are put back to their backing store. This is done by invoking the relevant
pager according to the VM object to which the page belongs. For regular VM objects, the vnode pager is used, while
for anonymous VM objects, the swap pager is used.

After the pager has completed the put back to backing store, the page is placed on the free queue. This process will
continue in a loop until the number of pages on the free page queue reaches the high watermark.

Todo: describe what happens when no pages can be put back to backing store anymore, e.g. when pagefile space is
exhausted.

Pagers

Pagers are reponsible for carrying out the actual paging-in and paging-out of pages; page-in requests are generated
by page faults, while page-out requests are generated by the page daemon. The interface is simple - just a page-out
function to put a page to backing store, and a page-in function to retrieve a page from backing store.

Page-in

Page-in takes two arguments - the vm_page_t to page in, and a drumslot_t - this is only passed for page-ins for anony-
mous memory, it’s irrelevant for other object types. The fault handler will have allocated a new page already, and have
inserted it into the owner, setting the busy bit so that any further page faults will wait on an event which will be signalled
when the page-in is complete. The page fault handler unlocks the address space in which which the fault occurred, the
owner object, and the page queues before calling the pager. The page-in routine must now carry out any I/O necessary
to bring the page into memory, after which the busy bit can be unset. The fault handler now returns with the “retry”
status code, causing the fault to be restarted.

Note: Dropping the locks requires page faults to be restarted after page-in, but it has a major advantage: when two
threads share an address space map, it allows page faults on separate pages to be handled simultaneously, since the map
remains unlocked. For vnode VM objects there are an additional two advantages, which come about because of vnode
VM objects relying on just one lock, rather than the one-lock-per-anon of anonymous memory:

6 Chapter 1. Contents

Keyronex Operating System Internals, Release 1.0

1. It allows for the pagedaemon to simultaneously page-out other pages of that object.

2. It allows other threads to simultaneously page-in other pages of that object.

Page-out

Page-out also takes only one argument, the vm_page_t to page out. The page daemon will have set the busy bit of the
page and unmapped it from all physical maps in which it is mapped. Note that the object is unlocked at the time of
making the page-out request. The pager can then do any I/O necessary to put the page to its backing store, after which
it can lock the owner and update its state appropriately - that is, remove and deallocate the associated vmp_objpage_t
from the RB tree of its owning vm_object_t, or set the owning vmp_anon’s state to ‘nonresident’ and set its drumslot
appropriately.

Important: Page fault code paths have a “top-down” lock ordering (they lock the address space, then the object, then
for anonymous mappings also the vmp_anon, then the page queues) while the page daemon code path has a “bottom-up”
lock ordering (it locks the page queues, then the vmp_anon or vm_object_t the page is owned by.)

This lock ordering violation is dealt with by having the page daemon simply do a try-lock of the owner object; if the
object cannot be locked, the page is put back on the queue and left for later. In a low-memory situation, fault handlers
will be waiting with all locks released on an event which is signalled when memory is plentiful again, so even in the
worst-case scenario the page will eventually be paged out.

Allocation

Pagers may need to allocate memory themselves to carry out page-out even under low-memory conditions. This is why
the low watermark for free pages is set to a number higher than zero. When that low watermark is reached, most page
allocation attempts will sleep until an event is signalled indicating that there are sufficient free pages to proceed again.
Pagers do not make these sleepable allocations.

1.2.4 Anonymous mappings

Anonymous mappings supporting copy-on-write semantics are implemented efficiently with reference-counting. The
core principle is that a vmp_anon with a reference count greater than 1 is always mapped read-only, and if there is a
write fault at an address which is represented by that vmp_anon, it must copy the vmp_anon and its underlying page
before mapping it read-write.

Todo: as well as the example below, fully detail the logic in an anonymous fault?

Consider a region of anonymous memory newly allocated in a process with PID 1. There are no vmp_anons yet because
they are lazily allocated on first fault. PID 1 writes to the first page of region; a vmp_anon is allocated with a refcnt of
1. PID 1 also writes to the 2nd page, and the same logic is followed.

Now PID 1 fork()s into PID 2. PID 2 is given a new anonymous map entry for that region with a copy of the vmp_amap
of that of its parent’s equivalent VM object. The copy refers to the same vmp_anons, but the copying process has
incremented the reference count of the 1st and 2nd vmp_anon as they are now referenced by two vmp_amaps. The
copying process has also made all the old writeable mappings of these pages read-only again.

PID 2 now writes to the 2nd page of the anonymous region. The fault handler finds the corresponding vmp_anon and
notices that its refcnt is 2. As this is a write fault, it must copy the vmp_anon and its underlying page. After copying it,

1.2. Virtual Memory Manager 7

Keyronex Operating System Internals, Release 1.0

it releases its reference to the vmp_anon that was shared with PID 1, and maps the new copied vmp_anon’s underlying
page read-write. The same thing would happen if PID 1 had tried to do the write.

1.2.5 Anonymous-on-vnode mappings

A special case of mapping is used for MAP_PRIVATE mmap()’s of a vnode. A vm_map_entry is created holding both a
vm_object_t pointer to the vnode VM object, and also the has_anonymous flag.

Fault handling for this case is modified with respect to handling for faults in simple anonymous memory. A read fault
will first check for a vmp_anon that already exists, but if there is none, it will instead ask the vm_object_t to map the
page for the faulting address read-only into the process’ address space.

In the case of a write fault, the page for the faulting address in the vnode object will be copied into a new page allocated
which will be associated with a vmp_anon and placed in the anonymous-on-vnode vm_map_entry‘s amap. This is then
mapped read-write into the faulting process’ address space, and copy-on-write has been achieved.

It should be noted that this is asymmetric copy-on-write; that is, once an anonymous-on-vnode mapping is established,
if the vm_object_t‘s pages are changed by writes into a shared mapping of that object, or by any other means, e.g. file
I/O, then this does not cause those pages to be copied.

This means that unless and until there is a write fault within the anonymous-on-vnode mapping range, causing the page
in the vm_object_t to be copied, the contents of the range may change.

1.3 I/O

1.3.1 Storage Stack

In this example storage stack, there is a VirtIODisk (viodisk0) at the root of the stack, which interfaces directly with
the hardware (and - not pictured - below it would be a PCIDevice.) An attached Disk (dk0) provides the standard
conveniences. Attached to dk0 is a VolumeManager, which has detected two GPT partitions and created and attached
two Volumes (ld0s1 and ld0s2).

8 Chapter 1. Contents

Keyronex Operating System Internals, Release 1.0

Fig. 1: A storage stack that might be created for a VirtIO disk.

1.3. I/O 9

	Contents
	Introduction
	Virtual Memory Manager
	Overview
	Data Structures
	vm_page_t
	vmp_anon
	vm_amap
	vm_object_t and vmp_objpage
	vm_map_t and vm_map_entry

	Page management
	The page daemon
	Pagers
	Page-in
	Page-out
	Allocation

	Anonymous mappings
	Anonymous-on-vnode mappings

	I/O
	Storage Stack

